Single-criterion decision making tools
laplace
JMcDM.SCDM.laplace — Function
laplace(decisionMat)
Apply Laplace method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.
Output
::LaplaceResult: LaplaceResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
3000 2750 2500 2250;
1500 4750 8000 7750;
2000 5250 8500 11750
]
julia> result = laplace(mat)maximin
JMcDM.SCDM.maximin — Function
maximin(decisionMat)
Apply Maximin method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.
Output
::MaximinResult: MaximinResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> result = maximin(mat)maximax
JMcDM.SCDM.maximax — Function
maximax(decisionMat)
Apply Maximax method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.
Output
::MaximaxResult: MaximaxResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> result = maximax(mat)minimax
JMcDM.SCDM.minimax — Function
minimax(decisionMat)
Apply Minimax method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.
Output
::MinimaxResult: MinimaxResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> result = minimax(mat)minimin
JMcDM.SCDM.minimin — Function
minimin(decisionMat)
Apply Minimin method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.
Output
::MiniminResult: Minimin object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> result = minimin(mat)savage
JMcDM.SCDM.savage — Function
savage(decisionMat)
Apply Savage method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.
Output
::SavageResult: SavageResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> result = savage(mat)
julia> result.bestIndex
4hurwicz
JMcDM.SCDM.hurwicz — Function
hurwicz(decisionMat; alpha = 0.5)
Apply Hurwicz method for a given decision matrix (for convenience, in type of Matrix).Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.alpha::Float64: The optional alpha value for the Hurwicz method. Default is 0.5.
Output
::HurwiczResult: HurwiczResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> result = hurwicz(mat)
julia> result.bestIndex
3mle
JMcDM.SCDM.mle — Function
mle(decisionMat, weights)
Apply MLE (Maximum Likelihood) method for a given decision matrix (for convenience, in type of Matrix) and weights.Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.weights::Array{Float64,1}: Array of weights for each criterion that sums up to 1.0.
Output
::MLEResult: MLEResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> weights = [0.2, 0.5, 0.2, 0.1]
julia> result = mle(mat, weights)
julia> result.bestIndex
2expectedregret
JMcDM.SCDM.expectedregret — Function
expectedregret(decisionMat, weights)
Apply Expected Regret method for a given decision matrix (for convenience, in type of Matrix) and weights.Arguments:
decisionMat::Matrix: Decision matrix with n alternatives and m criteria.weights::Array{Float64,1}: Array of weights for each criterion that sums up to 1.0.
Output
::ExpectedRegretResult: ExpectedRegretResult object that holds multiple outputs including the best alternative.
Examples
julia> mat = [
26 26 18 22;
22 34 30 18;
28 24 34 26;
22 30 28 20
]
julia> weights = [0.2, 0.5, 0.2, 0.1]
julia> result = expectedregret(mat, weights)
julia> result.bestIndex
2